Нормальное распределение двух случайных величин. Нормальный закон распределения вероятностей непрерывной случайной величины. Нормальное распределение в MS EXCEL

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса .

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры и, входящие в плотность распределения являются соответственно математическим ожиданием и среднеквадратическим отклонением случайной величиныХ .

Найдём функцию распределения F (x ) .

График плотности нормального распределения называется нормальной кривой или кривой Гаусса .

Нормальная кривая обладает следующими свойствами:

1) Функция определена на всей числовой оси.

2) При всех х функция распределения принимает только положительные значения.

3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х , значение функции стремится к нулю.

4) Найдём экстремум функции.

Т.к. при y ’ > 0 при x < m и y ’ < 0 при x > m , то в точке х = т функция имеет максимум, равный
.

5) Функция является симметричной относительно прямой х = а , т.к. разность

(х – а ) входит в функцию плотности распределения в квадрате.

6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m +  и x = m -  вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно
.

Построим график функции плотности распределения (рис. 5).

Построены графики при т =0 и трёх возможных значениях среднеквадратичного отклонения  = 1,  = 2 и  = 7. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается.

Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.

При а = 0 и  = 1 кривая называется нормированной . Уравнение нормированной кривой:

      Функция Лапласа

Найдём вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Т.к. интеграл
не выражается через элементарные функции, то вводится в рассмотрение функция

,

которая называется функцией Лапласа или интегралом вероятностей .

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

На рис. 6 показан график функции Лапласа.

Функция Лапласа обладает следующими свойствами:

1) Ф(0) = 0;

2) Ф(-х) = - Ф(х);

3) Ф() = 1.

Функцию Лапласа также называют функцией ошибок и обозначают erf x .

Ещё используетсянормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

На рис. 7 показан график нормированной функции Лапласа.

      Правило трёх сигм

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трёх сигм .

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины :

Если принять  = 3, то получаем с использованием таблиц значений функции Лапласа:

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трёх сигм .

Не практике считается, что если для какой-либо случайной величины выполняется правило трёх сигм, то эта случайная величина имеет нормальное распределение.

Заключение по лекции:

В лекции мы рассмотрели законы распределения непрерывных величин В ходе подготовки к последующей лекции и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.

Нормальное распределение. Функция нормального распределения. Функция Лапласа. Числовые характеристики нормального распределения. Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило трех сигм. Распределения, связанные с нормальным: распределения Стьюдента, Пирса и Фишера. Характеристическая функция нормального распределения.

8. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

8.1. Функция нормального распределения

Одним из наиболее часто встречающихся распределений является нормальное распределение. Оно играет большую роль в теории вероятностей и ее приложениях. Фундаментальная роль, которую играет нормальное распределение, объясняется тем, что суммы случайных величин с ростом числа слагаемых при довольно широких предположениях ведут себя асимптотически нормально (см. тему "Центральная предельная теорема").

Плотность функции нормального распределения имеет вид

Функция нормального распределения имеет вид

. (8.2)

Однако часто вместо функции нормального распределения используется функция Лапласа.

Пусть a =0, =1, то получим

. (8.3)

Такая функция называется стандартным нормальным распределением . Запишем данную функцию в следующем виде

.

Поскольку F 0 (+)=1, то в силу симметрии первое слагаемое равно 0,5, а второе слагаемое есть функция Лапласа

. (8.4)

Таким образом,

.

Отсюда получаем равенство

, (8.5)

связывающее функцию нормального распределения и функцию Лапласа.

Для стандартного нормального распределения и функции Лапласа существуют обширные таблицы. Однако здесь нужно иметь в виду, что иногда вместо рассмотренных функций используют функции

. (8.6)

или интеграл ошибок

. (8.7)

Замечание. Открытие нормального распределения связано с именами К. Гаусса и П. Лапласа , у которых оно впервые появилось связи с исследованием по теории ошибок и методу наименьших квадратов. Поэтому нормальное распределение называют еще распределением Лапласа-Гаусса , или просто распределением Гаусса или Лапласа .

Найдем математическое ожидание нормального распределения:

.

Вычислим дисперсию:

.

Таким образом,

M[X] = a , D[X] =  2 ,

т.е. нормальное распределение характеризуется двумя параметрами: a , имеющему смысл математического ожидания, и , имеющему смысл среднего квадратичного отклонения.

Рис. 8.1

График плотности функции нормального распределения имеет следующий вид (кривая Гаусса ). Максимум будет при x=a , точки перегиба в точках a – и a +. Кривая симметрична относительно прямой x=a . С уменьшением  кривая становится все более островершинной.

8.2. Вероятность попадания нормально распределенной случайной величины в заданный интервал

Известно, что если случайная величина X задана плотностью распределения f(x ), то вероятность того, что X примет значение, принадлежащее интервалу (,), имеет вид

.

В случае нормального распределения эта формула примет следующий вид

. (8.8)

Часто требуется вычислить вероятность того, что отклонение случайной величины X по абсолютной величине меньше заданного положительного числа , т.е. требуется найти вероятность осуществления неравенства |X–a |<. Заметим, что неравенство равносильным ему двойным неравенством a –a +. Тогда

.

Таким образом,

. (8.9)

В частности, если , то

P(|X–a |<) = 2(1) = 0,6827;

если 2, то

P(|X–a |<2) = 2(2) = 0,9545;

если , то

P(|X–a |<3) = 2(3) = 0,9973.

Последнее равенство показывает, что во многих практических вопросах при рассмотрении нормального распределения можно пренебречь возможностью отклонения случайной величины от a больше, чем 3 Это есть т.н. правило "трех сигм" .

Например, каждому кто занимался измерениями, встречался с ситуацией, когда появляется "дикое значение" . В связи с этим возникает проблема: исключать это значение или его следует оставить. Так, при разработке норматива времени для изготовления одной детали проделали следующие измерения: 5,0; 4,8; 5,2; 5,3; 5,0; 6,1. Последнее число сильно отличается от других. В связи с этим возникает вопрос, не скрыта ли здесь ошибка в измерениях. Вычислим среднее значение
и среднее квадратичное отклонение =0,46. После этого построим "трехсигмовый" интервал: (4,84; 6,61). Поскольку значение x =6,1 не выходит за пределы трехсигмовой зоны, то его нельзя считать "диким".

Другой пример. На конвейере изготовляются детали. На основании статистических данных контроля деталей вычисляют среднее квадратичное отклонение . Затем строят прямую средней линии, окаймленную трехсигмовой полосой. Если точки контрольных измерений находятся внутри трехсигмовой полосы, то технологический процесс следует считать стабильным и качество продукции высоким. Если точки близки к контрольным линиям, но не выходят за пределы трехсигмовой зоны, то это указывает на разладку технологического процесса. Если же точки выходят за пределы трехсигмовой зоны, то это означает, что идет брак.

Пример 8.1. Автомат изготовляет шарики. Шарик считается годным, если отклонение диаметра шарика X от проектного по абсолютной величине не превышает 0,7 мм . Считая, что случайная величина X распределена нормально со средним квадратичным отклонением 0,4 мм , определить, сколько процентов годных шариков изготовляет автомат.

Решение. Поскольку =0,4 мм и =0,7 мм , то

Следовательно, автомат изготовляет 92% годных деталей.

8.3. Распределения, связанные с нормальным

8.3.1. Распределение Пирсона ( 2 -распределение)

Пусть независимые случайные величины U 1 , U 2 , …, U k описываются стандартным нормальным распределением: U i =N (0,1). Тогда распределение суммы квадратов этих величин

называется распределением  2 ("хи-квадрат" ) с k степенями свободы . В явном виде плотность функции этого распределения имеет вид

(8.11)

где
– гамма-функция; в частности, (n +1)=n !.

Рис. 8.2

Распределение Пирсона определяется одним параметром – числом степеней свободы k . Графики этой функции изображены на рис. 8.2. Числовые характеристики распределения Пирсона:

Если случайные величины  2 (k 1) и  2 (k 2) независимы, то

Отметим, что с увеличением числа степеней свободы распределение Пирсона постепенно приближается к нормальному.

8.3.2. Распределение Стьюдента (t-распределение)

Пусть U –стандартная нормально распределенная случайная величины, U =N (0,1), а  2 – случайная величина, имеющая  2 -распределение с k степенями свободы, причем U и  2 независимые величины. Тогда распределение величины

(8.12)

называется распределением Стьюдента (t- распределением ) с k степенями свободы . В явном виде плотность функции распределения Стьюдента имеет вид

Рис. 8.3

(8.13)

График этой функции изображен на рис. 8.3.

Числовые характеристики распределения Стьюдента:

Отметим, что с возрастанием числа степеней свободы распределение Стьюдента быстро приближается к нормальному.

8.3.3. Распределение Фишера (F-распределение)

Пусть  2 (k 1) и  2 (k 2) – независимые случайные величины, имеющие  2 -распределение соответственно с k 1 и k 2 степенями свободы. Распределение величины

(8.14)

называется распределением Фишера (F- распределением ) со степенями свободы k 1 и k 2 . В явном виде плотность распределения Фишера имеет вид

(8.15)

График этой функции изображен на рис. 8.4.

Числовые характеристики распределения Фишера:

О

Рис. 8.4

тметим, что между случайными величинами, имеющими нормальное распределение, распределение Пирсона, Стьюдента и Фишера, имеют место соотношения:

8.4*. Характеристическая функция нормального распределения

Пусть случайная величина  распределена по стандартному нормальному распределению. Тогда для характеристической функции получим

.

Делая замену y=x–it , получим

Из теории функций комплексной переменной известно, что

.

Поэтому окончательно получаем
.

Как мы видели, если случайная величина  распределена по стандартному нормальному закону, то случайная величина =t +m распределена но нормальному закону с параметрами m и . Тогда характеристические функции f  (t ) и f  (t ) связаны по свойству 2 соотношением

,

или, окончательно получаем, что характеристическая функция для нормального распределения имеет вид

. (8.16)

Рассмотрим Нормальное распределение. С помощью функции MS EXCEL НОРМ.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел, распределенных по нормальному закону, произведем оценку параметров распределения, среднего значения и стандартного отклонения .

Нормальное распределение (также называется распределением Гаусса) является самым важным как в теории, так в приложениях системы контроля качества. Важность значения Нормального распределения (англ. Normal distribution ) во многих областях науки вытекает из теории вероятностей.

Определение : Случайная величина x распределена по нормальному закону , если она имеет :

Нормальное распределение зависит от двух параметров: μ (мю) - является , и σ (сигма) - является (среднеквадратичным отклонением). Параметр μ определяет положение центра плотности вероятности нормального распределения , а σ - разброс относительно центра (среднего).

Примечание : О влиянии параметров μ и σ на форму распределения изложено в статье про , а в файле примера на листе Влияние параметров можно с помощью понаблюдать за изменением формы кривой.

Нормальное распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Нормального распределения имеется функция НОРМ.РАСП() , английское название - NORM.DIST(), которая позволяет вычислить плотность вероятности (см. формулу выше) и интегральную функцию распределения (вероятность, что случайная величина X, распределенная по нормальному закону , примет значение меньше или равное x). Вычисления в последнем случае производятся по следующей формуле:

Вышеуказанное распределение имеет обозначение N (μ; σ). Так же часто используют обозначение через N (μ; σ 2).

Примечание : До MS EXCEL 2010 в EXCEL была только функция НОРМРАСП() , которая также позволяет вычислить функцию распределения и плотность вероятности. НОРМРАСП() оставлена в MS EXCEL 2010 для совместимости.

Стандартное нормальное распределение

Стандартным нормальным распределением называется нормальное распределение с μ=0 и σ=1. Вышеуказанное распределение имеет обозначение N (0;1).

Примечание : В литературе для случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение z.

Любое нормальное распределение можно преобразовать в стандартное через замену переменной z =(x -μ)/σ . Этот процесс преобразования называется стандартизацией .

Примечание : В MS EXCEL имеется функция НОРМАЛИЗАЦИЯ() , которая выполняет вышеуказанное преобразование. Хотя в MS EXCEL это преобразование называется почему-то нормализацией . Формулы =(x-μ)/σ и =НОРМАЛИЗАЦИЯ(х;μ;σ) вернут одинаковый результат.

В MS EXCEL 2010 для имеется специальная функция НОРМ.СТ.РАСП() и ее устаревший вариант НОРМСТРАСП() , выполняющий аналогичные вычисления.

Продемонстрируем, как в MS EXCEL осуществляется процесс стандартизации нормального распределения N (1,5; 2).

Для этого вычислим вероятность, что случайная величина, распределенная по нормальному закону N(1,5; 2) , меньше или равна 2,5. Формула выглядит так: =НОРМ.РАСП(2,5; 1,5; 2; ИСТИНА) =0,691462. Сделав замену переменной z =(2,5-1,5)/2=0,5 , запишем формулу для вычисления Стандартного нормального распределения: =НОРМ.СТ.РАСП(0,5; ИСТИНА) =0,691462.

Естественно, обе формулы дают одинаковые результаты (см. файл примера лист Пример ).

Обратите внимание, что стандартизация относится только к (аргумент интегральная равен ИСТИНА), а не к плотности вероятности .

Примечание : В литературе для функции, вычисляющей вероятности случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение Ф(z). В MS EXCEL эта функция вычисляется по формуле
=НОРМ.СТ.РАСП(z;ИСТИНА) . Вычисления производятся по формуле

В силу четности функции распределения f(x), а именно f(x)=f(-х), функция стандартного нормального распределения обладает свойством Ф(-x)=1-Ф(x).

Обратные функции

Функция НОРМ.СТ.РАСП(x;ИСТИНА) вычисляет вероятность P, что случайная величина Х примет значение меньше или равное х. Но часто требуется провести обратное вычисление: зная вероятность P, требуется вычислить значение х. Вычисленное значение х называется стандартного нормального распределения .

В MS EXCEL для вычисления квантилей используют функцию НОРМ.СТ.ОБР() и НОРМ.ОБР() .

Графики функций

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Как известно, около 68% значений, выбранных из совокупности, имеющей нормальное распределение , находятся в пределах 1 стандартного отклонения (σ) от μ(среднего или математического ожидания); около 95% - в пределах 2-х σ, а в пределах 3-х σ находятся уже 99% значений. Убедиться в этом для стандартного нормального распределения можно записав формулу:

=НОРМ.СТ.РАСП(1;ИСТИНА)-НОРМ.СТ.РАСП(-1;ИСТИНА)

которая вернет значение 68,2689% - именно такой процент значений находятся в пределах +/-1 стандартного отклонения от среднего (см. лист График в файле примера ).

В силу четности функции плотности стандартного нормального распределения: f (x )= f (-х) , функция стандартного нормального распределения обладает свойством F(-x)=1-F(x). Поэтому, вышеуказанную формулу можно упростить:

=2*НОРМ.СТ.РАСП(1;ИСТИНА)-1

Для произвольной функции нормального распределения N(μ; σ) аналогичные вычисления нужно производить по формуле:

2* НОРМ.РАСП(μ+1*σ;μ;σ;ИСТИНА)-1

Вышеуказанные расчеты вероятности требуются для .

Примечание : Для удобства написания формул в файле примера созданы для параметров распределения: μ и σ.

Генерация случайных чисел

Сгенерируем 3 массива по 100 чисел с различными μ и σ. Для этого в окне Генерация случайных чисел установим следующие значения для каждой пары параметров:

Примечание : Если установить опцию Случайное рассеивание (Random Seed ), то можно выбрать определенный случайный набор сгенерированных чисел. Например, установив эту опцию равной 25, можно сгенерировать на разных компьютерах одни и те же наборы случайных чисел (если, конечно, другие параметры распределения совпадают). Значение опции может принимать целые значения от 1 до 32 767. Название опции Случайное рассеивание может запутать. Лучше было бы ее перевести как Номер набора со случайными числами .

В итоге будем иметь 3 столбца чисел, на основании которых можно, оценить параметры распределения, из которого была произведена выборка: μ и σ. Оценку для μ можно сделать с использованием функции СРЗНАЧ() , а для σ – с использованием функции СТАНДОТКЛОН.В() , см. файл примера лист Генерация .

Примечание : Для генерирования массива чисел, распределенных по нормальному закону , можно использовать формулу =НОРМ.ОБР(СЛЧИС();μ;σ) . Функция СЛЧИС() генерирует от 0 до 1, что как раз соответствует диапазону изменения вероятности (см. файл примера лист Генерация ).

Задачи

Задача1 . Компания изготавливает нейлоновые нити со средней прочностью 41 МПа и стандартным отклонением 2 МПа. Потребитель хочет приобрести нити с прочностью не менее 36 МПа. Рассчитайте вероятность, что партии нити, изготовленные компанией для потребителя, будут соответствовать требованиям или превышать их.
Решение1 : =1-НОРМ.РАСП(36;41;2;ИСТИНА)

Задача2 . Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Согласно техническим условиям, трубы признаются годными, если диаметр находится в пределах 20,00+/- 0,40 мм. Какая доля изготовленных труб соответствует ТУ?
Решение2 : = НОРМ.РАСП(20,00+0,40;20,20;0,25;ИСТИНА)- НОРМ.РАСП(20,00-0,40;20,20;0,25)
На рисунке ниже, выделена область значений диаметров, которая удовлетворяет требованиям спецификации.

Решение приведено в файле примера лист Задачи .

Задача3 . Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Внешний диаметр не должен превышать определенное значение (предполагается, что нижняя граница не важна). Какую верхнюю границу в технических условиях необходимо установить, чтобы ей соответствовало 97,5% всех изготавливаемых изделий?
Решение3 : =НОРМ.ОБР(0,975; 20,20; 0,25) =20,6899 или
=НОРМ.СТ.ОБР(0,975)*0,25+20,2 (произведена «дестандартизация», см. выше)

Задача 4 . Нахождение параметров нормального распределения по значениям 2-х (или ).
Предположим, известно, что случайная величина имеет нормальное распределение, но не известны его параметры, а только 2-я процентиля (например, 0,5-процентиль , т.е. медиана и 0,95-я процентиль ). Т.к. известна , то мы знаем , т.е. μ. Чтобы найти нужно использовать .
Решение приведено в файле примера лист Задачи .

Примечание : До MS EXCEL 2010 в EXCEL были функции НОРМОБР() и НОРМСТОБР() , которые эквивалентны НОРМ.ОБР() и НОРМ.СТ.ОБР() . НОРМОБР() и НОРМСТОБР() оставлены в MS EXCEL 2010 и выше только для совместимости.

Линейные комбинации нормально распределенных случайных величин

Известно, что линейная комбинация нормально распределённых случайных величин x (i ) с параметрами μ(i ) и σ(i ) также распределена нормально. Например, если случайная величина Y=x(1)+x(2), то Y будет иметь распределение с параметрами μ(1)+ μ(2) и КОРЕНЬ(σ(1)^2+ σ(2)^2). Убедимся в этом с помощью MS EXCEL.

Нормальное распределение - наиболее часто встречающийся вид распределения. С ним приходится встречаться при анализе погрешностей измерений, контроле технологических процессов и режимов, а также при анализе и прогнозировании различных явлений в биологии , медицине и других областях знаний.

Термин «нормальное распределение» применяется в условном смысле как общепринятый в литературе, хотя и не совсем удачный. Так, утверждение, что какой-то признак подчиняется нормальному закону распределения, вовсе не означает наличие каких-либо незыблемых норм, якобы лежащих в основе явления, отражением которого является рассматриваемый признак, а подчинение другим законам распределения не означает какую-то анормальность данного явления.

Главная особенность нормального распределения состоит в том, что оно является предельным, к которому приближаются другие распределения. Нормальное распределение впервые открыто Муавром в 1733 году. Нормальному закону подчиняются только непрерывные случайные величины. Плотность нормального закона распределения имеет вид .

Математическое ожидание для нормального закона распределения равно . Дисперсия равна .

Основные свойства нормального распределения.

1. Функция плотности распределения определена на всей числовой оси Ох , то есть каждому значению х соответствует вполне определённое значение функции.

2. При всех значениях х (как положительных, так и отрицательных) функция плотности принимает положительные значения, то есть нормальная кривая расположена над осью Ох .

3. Предел функции плотности при неограниченном возрастании х равен нулю, .

4. Функция плотности нормального распределения в точке имеет максимум .

5. График функции плотности симметричен относительно прямой .

6. Кривая распределения имеет две точки перегиба с координатами и .

7. Мода и медиана нормального распределения совпадают с математическим ожиданием а .

8. Форма нормальной кривой не изменяется при изменении параметра а .

9. Коэффициенты асимметрии и эксцесса нормального распределения равны нулю.

Очевидна важность вычисления этих коэффициентов для эмпирических рядов распределения, так как они характеризуют скошеннность и крутость данного ряда по сравнению с нормальным.

Вероятность попадания в интервал находится по формуле , где нечётная табулированная функция.

Определим вероятность того, что нормально распределённая случайная величина отклоняется от своего математического ожидания на величину, меньшую , то есть найдём вероятность осуществления неравенства , или вероятность двойного неравенства . Подставляя в формулу, получим

Выразив отклонение случайной величины Х в долях среднего квадратического отклонения, то есть положив в последнем равенстве, получим .


Тогда при получим ,

при получим ,

при получим .

Из последнего неравенства следует, что практически рассеяние нормально распределённой случайной величины заключено на участке . Вероятность того, что случайная величина не попадёт на этот участок, очень мала, а именно равна 0,0027, то есть это событие может произойти лишь в трёх случаях из 1000. Такие события можно считать практически невозможными. На приведённых рассуждениях основано правило трёх сигм , которое формулируется следующим образом: если случайная величина имеет нормальное распределение, то отклонение этой величины от математического ожидания по абсолютной величине не превосходит утроенного среднего квадратического отклонения .

Пример 28 . Деталь, изготовленная автоматом, считается годной, если отклонение её контролируемого размера от проектного не превышает 10 мм. Случайные отклонения контролируемого размера от проектного подчинены нормальному закону распределения со средним квадратическим отклонением мм и математическим ожиданием . Сколько процентов годных деталей изготавливает автомат?

Решение. Рассмотрим случайную величину Х - отклонение размера от проектного. Деталь будет признана годной, если случайная величина принадлежит интервалу . Вероятность изготовления годной детали найдём по формуле . Следовательно, процент годных деталей, изготавливаемых автоматом, равен 95,44%.

Биномиальное распределение

Биномиальным является распределение вероятностей появления m числа событий в п независимых испытаниях, в каждом из которых вероятность появления события постоянна и равна р . Вероятность возможного числа появлений события вычисляется по формуле Бернулли: ,

где . Постоянные п и р , входящие в это выражение, параметры биномиального закона. Биномиальным распределением описывается распределение вероятностей дискретной случайной величины.

Основные числовые характеристики биномиального распределения. Математическое ожидание равно . Дисперсия равна . Коэффициенты асимметрии и эксцесса равны и . При неограниченном возрастании числа испытаний А и Е стремятся к нулю, следовательно, можно предположить, что биномиальное распределение сходится к нормальному с возрастанием числа испытаний.

Пример 29 . Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А в одном испытании, если дисперсия числа появлений в трёх испытаниях равна 0,63.

Решение. Для биномиального распределения . Подставим значения, получим отсюда или тогда и .

Распределение Пуассона

Закон распределения редких явлений

Распределение Пуассона описывает число событий m , происходящих за одинаковые промежутки времени при условии, что события происходят независимо друг от друга с постоянной средней интенсивностью. При этом число испытаний п велико, а вероятность появления события в каждом испытании р мала. Поэтому распределение Пуассона называют законом редких явлений или простейшим потоком. Параметром распределения Пуассона является величина , характеризующая интенсивность появления событий в п испытаниях. Формула распределения Пуассона .

Пуассоновским распределением хорошо описываются число требований на выплату страховых сумм за год, число вызовов, поступивших на телефонную станцию за определённое время, число отказов элементов при испытании на надёжность, число бракованных изделий и так далее.

Основные числовые характеристики для распределения Пуассона. Математическое ожидание равно дисперсии и равно а . То есть . Это является отличительной особенностью этого распределения. Коэффициенты асимметрии и эксцесса соответственно равны .

Пример 30 . Среднее число выплат страховых сумм в день равно двум. Найти вероятность того, что за пять дней придётся выплатить: 1) 6 страховых сумм; 2) менее шести сумм; 3) не менее шести.распределение.

Это распределение часто наблюдается при изучении сроков службы различных устройств, времени безотказной работы отдельных элементов, частей системы и системы в целом, при рассмотрении случайных промежутков времени между появлениями двух последовательных редких событий.

Плотность показательного распределения определяется параметром , который называют интенсивностью отказов . Этот термин связан с конкретной областью приложения - теорией надёжности.

Выражение интегральной функции показательного распределения можно найти, используя свойства дифференциальной функции:

Математическое ожидание показательного распределения , дисперсия , среднее квадратическое отклонение . Таким образом, для этого распределения характерно, что среднее квадратическое отклонение численно равно математическому ожиданию. При любом значении параметра коэффициенты асимметрии и эксцесса - постоянные величины .

Пример 31 . Среднее время работы телевизора до первого отказа равно 500 часов. Найти вероятность того, что наудачу взятый телевизор проработает без поломок более 1000 часов.

Решение. Так как среднее время работы до первого отказа равно 500, то . Искомую вероятность найдём по формуле .

(вещественный, строго положительный)

Норма́льное распределе́ние , также называемое распределением Гаусса или Гаусса - Лапласа - распределение вероятностей , которое в одномерном случае задаётся функцией плотности вероятности , совпадающей с функцией Гаусса :

f (x) = 1 σ 2 π e − (x − μ) 2 2 σ 2 , {\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\;e^{-{\frac {(x-\mu)^{2}}{2\sigma ^{2}}}},}

где параметр μ - математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ - среднеквадратическое отклонение ( σ  ² - дисперсия) распределения.

Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в статье «Многомерное нормальное распределение ».

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ = 0 и стандартным отклонением σ = 1 .

Энциклопедичный YouTube

  • 1 / 5

    Важное значение нормального распределения во многих областях науки (например, в математической статистике и статистической физике) вытекает из центральной предельной теоремы теории вероятностей . Если результат наблюдения является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то при увеличении числа слагаемых распределение центрированного и нормированного результата стремится к нормальному. Этот закон теории вероятностей имеет следствием широкое распространение нормального распределения, что и стало одной из причин его наименования.

    Свойства

    Моменты

    Если случайные величины X 1 {\displaystyle X_{1}} и X 2 {\displaystyle X_{2}} независимы и имеют нормальное распределение с математическими ожиданиями μ 1 {\displaystyle \mu _{1}} и μ 2 {\displaystyle \mu _{2}} и дисперсиями σ 1 2 {\displaystyle \sigma _{1}^{2}} и σ 2 2 {\displaystyle \sigma _{2}^{2}} соответственно, то X 1 + X 2 {\displaystyle X_{1}+X_{2}} также имеет нормальное распределение с математическим ожиданием μ 1 + μ 2 {\displaystyle \mu _{1}+\mu _{2}} и дисперсией σ 1 2 + σ 2 2 . {\displaystyle \sigma _{1}^{2}+\sigma _{2}^{2}.} Отсюда вытекает, что нормальная случайная величина представима как сумма произвольного числа независимых нормальных случайных величин.

    Максимальная энтропия

    Нормальное распределение имеет максимальную дифференциальную энтропию среди всех непрерывных распределений, дисперсия которых не превышает заданную величину .

    Моделирование нормальных псевдослучайных величин

    Простейшие приближённые методы моделирования основываются на центральной предельной теореме . Именно, если сложить несколько независимых одинаково распределённых величин с конечной дисперсией , то сумма будет распределена приблизительно нормально. Например, если сложить 100 независимых стандартно равномерно  распределённых случайных величин, то распределение суммы будет приближённо нормальным .

    Для программного генерирования нормально распределённых псевдослучайных величин предпочтительнее использовать преобразование Бокса - Мюллера . Оно позволяет генерировать одну нормально распределённую величину на базе одной равномерно распределённой.

    Нормальное распределение в природе и приложениях

    Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:

    • отклонение при стрельбе.
    • погрешности измерений (однако погрешности некоторых измерительных приборов имеют не нормальные распределения).
    • некоторые характеристики живых организмов в популяции.

    Такое широкое распространение этого распределения связано с тем, что оно является бесконечно делимым непрерывным распределением с конечной дисперсией. Поэтому к нему в пределе приближаются некоторые другие, например, биномиальное и пуассоновское . Этим распределением моделируются многие не детерминированные физические процессы.

    Связь с другими распределениями

    • Нормальное распределение является распределением Пирсона типа XI .
    • Отношение пары независимых стандартных нормально распределенных случайных величин имеет распределение Коши . То есть, если случайная величина X {\displaystyle X} представляет собой отношение X = Y / Z {\displaystyle X=Y/Z} (где Y {\displaystyle Y} и Z {\displaystyle Z} - независимые стандартные нормальные случайные величины), то она будет обладать распределением Коши.
    • Если z 1 , … , z k {\displaystyle z_{1},\ldots ,z_{k}} - совместно независимые стандартные нормальные случайные величины, то есть z i ∼ N (0 , 1) {\displaystyle z_{i}\sim N\left(0,1\right)} , то случайная величина x = z 1 2 + … + z k 2 {\displaystyle x=z_{1}^{2}+\ldots +z_{k}^{2}} имеет распределение хи-квадрат с k степенями свободы.
    • Если случайная величина X {\displaystyle X} подчинена логнормальному распределению , то её натуральный логарифм имеет нормальное распределение. То есть, если X ∼ L o g N (μ , σ 2) {\displaystyle X\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} , то Y = ln ⁡ (X) ∼ N (μ , σ 2) {\displaystyle Y=\ln \left(X\right)\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} . И наоборот, если Y ∼ N (μ , σ 2) {\displaystyle Y\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} , то X = exp ⁡ (Y) ∼ L o g N (μ , σ 2) {\displaystyle X=\exp \left(Y\right)\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} .
    • Отношение квадратов двух стандартных нормальных случайных величин имеет имеет
 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!